A Rapidly Manufacturable, Open-Source Ventilator for Austere Conditions

At the beginning of the COVID-19 pandemic, severe ventilator shortages led to dire situations both in developed regions and in low-resource regions where robust and affordable ventilators were already scarce. To address this urgent need, University of Utah Health researcher Kai Kuck, PhD, and colleagues developed Pufferfish, a complete intensive care unit ventilator capable of supporting the continuum from noninvasive ventilation to full mechanical ventilation. Continue reading → A Rapidly Manufacturable, Open-Source Ventilator for Austere Conditions

Developing New Chemical Reactions that Can Be Performed in Living Cells

The development of bioorthogonal chemical reactions—chemical reactions that can be conducted in living cells—has been one of the most significant areas of advancement in chemistry in recent years. Franzini and colleagues have developed a series of highly efficient chemical reactions, termed “dissociative bioorthogonal reactions”, that do just that. Continue reading → Developing New Chemical Reactions that Can Be Performed in Living Cells

Rapid Identification of Microbial Pathogens

The rapid identification of microbial pathogens is critical for timely and successful treatments. Improved capabilities in pathogen identification were the focus of a collaboration between physicians and scientists in the departments of Biomedical Informatics, Human Genetics, and Pathology. Continue reading → Rapid Identification of Microbial Pathogens

Therapy for ALS

Amyotrophic lateral sclerosis (ALS) is a catastrophic degeneration of the nervous system with great need for disease-modifying treatments. Stefan Pulst, MD, and his collaborator Daniel Scoles, PhD, were studying a lesser-known but similarly dire condition (spinocerebellar ataxia 2, SCA2) when they identified a gene relevant to both diseases. Continue reading → Therapy for ALS

Age-Related Sarcopenia and Recovery Following Muscle Disuse

Aging coincides with frequent periods of muscle disuse and, when combined with subsequent poor muscle recovery, contributes to sarcopenia, loss of muscle during aging. In order to develop effective interventions to offset deficits in muscle mass and function, Micah Drummond, PhD, and colleagues studied the cellular and molecular events that accompany muscle disuse in older adults. Continue reading → Age-Related Sarcopenia and Recovery Following Muscle Disuse