Focused Ultrasound as a Non-invasive Treatment for Breast Cancer

As physicians discover breast cancers at earlier stages, many women seek therapies that are effective yet non-invasive and non-scarring. Allison Payne, PhD, and her colleagues have developed a magnetic resonance-guided, focused ultrasound system specifically designed for breast tumor therapy. Steered by the physician, this system delivers high-intensity ultrasound waves to a precise area inside the breast, where non-invasively destroy malignant tissues are non-invasively destroyed with heat. Continue reading → Focused Ultrasound as a Non-invasive Treatment for Breast Cancer

Controlling the Spread of Antibiotic Resistance

Healthcare-associated infections due to antibiotic-resistant bacteria are costly and deadly. Michael Rubin, MD, and Matthew Samore, MD, generated new evidence on the effect of infection-prevention practices on the transmission of antibiotic-resistant pathogens, particularly methicillin-resistant Staphylococcus aureus (MRSA). Continue reading → Controlling the Spread of Antibiotic Resistance

The Levonorgestrel Intrauterine Device is Effective as Emergency Contraception

The U.S. Healthy People 2020 initiative aims to improve pregnancy planning and increase access to the full range of contraceptive methods. Utah presents unique barriers to contraceptive services, including limited public funding and geographical regions with limited family planning services. Continue reading → The Levonorgestrel Intrauterine Device is Effective as Emergency Contraception

Myocardial Recovery in Chronic Heart Failure

Chronic heart failure is a disease with poor prognosis and currently is a global epidemic. University of Utah Health investigator Stavros George Drakos, MD, and colleagues analyzed human heart tissue and produced evidence refuting the widely held notion that prolonged off-loading of the failing heart induced by cardiac assist devices results in disuse atrophy that further deteriorates heart function. Continue reading → Myocardial Recovery in Chronic Heart Failure

Megakaryocytes and Platelets in Immune and Inflammatory Responses and in COVID-19

Platelets—small cells which circulate in abundance in the bloodstream—are traditionally known for their ability to form clots and stop bleeding. Recent studies, however, have shown that platelets and their parent cells, megakaryocytes, also play a role in inflammation and infection. University of Utah Health investigators Robert Campbell, PhD, and Matthew Rondina, MD, and colleagues discovered that platelets and megakaryocytes respond robustly to infection, including COVID-19. These infection-driven changes in platelets activate clotting mechanisms and thus may contribute to the blood clots that complicate COVID-19 infection. Continue reading → Megakaryocytes and Platelets in Immune and Inflammatory Responses and in COVID-19

Neuronal Connections in the Retina

Bryan Jones, PhD, and colleagues used electron microscopes to visualize the chemical and electrical synaptic connections that makes up the neural network. They further observed, in a transgenic rabbit model of early retinal degeneration, abnormal connectivity in the rod-photoreceptor network and novel synaptic connections derived from sprouting. Continue reading → Neuronal Connections in the Retina

Unexpected Antiviral Activity of Spironolactone

Epstein–Barr virus (EBV) is a human herpesvirus associated with clinical infections and several types of malignancies. Sankar Swaminathan, MD, and colleagues showed that a hypertension/heart failure drug, spironolactone, also has anti-EBV effects. Continue reading → Unexpected Antiviral Activity of Spironolactone

New Class of Therapy for Chronic Heart Failure

The lab directed by Robin Shaw (MD, PhD) and Nora Eccles Harrison Cardiovascular Research & Training Institute (CVRTI) Investigators have identified an architectural protein (cBIN1) of heart muscle cells that organizes the intracellular signalizing network responsible for heart muscle contraction and relaxation. Continue reading → New Class of Therapy for Chronic Heart Failure

A Rapidly Manufacturable, Open-Source Ventilator for Austere Conditions

At the beginning of the COVID-19 pandemic, severe ventilator shortages led to dire situations both in developed regions and in low-resource regions where robust and affordable ventilators were already scarce. To address this urgent need, University of Utah Health researcher Kai Kuck, PhD, and colleagues developed Pufferfish, a complete intensive care unit ventilator capable of supporting the continuum from noninvasive ventilation to full mechanical ventilation. Continue reading → A Rapidly Manufacturable, Open-Source Ventilator for Austere Conditions

Enhancing Decision-making for Diagnosis and Management of Respiratory Infection

Barbara Jones, MD, and Matthew Samore, MD, used national data from the Department of Veterans Affairs to examine decision-making and practice patterns among providers prescribing antibiotics for patients diagnosed with acute respiratory infection. Continue reading → Enhancing Decision-making for Diagnosis and Management of Respiratory Infection

How Cells Choose to Create Energy

To supply their energy needs, cells typically choose between utilizing glucose in the cytoplasm (aerobic glycolysis and lactic acid fermentation) or “burning” pyruvate in the mitochondria (mitochondrial carbohydrate oxidation). Although this is arguably the most fundamental metabolic decision that cells make, before 2012 it was not clear how cells import pyruvate into mitochondria to fuel ATP production. Continue reading → How Cells Choose to Create Energy

How Iron Deficiency Impairs Pancreatic β-Cell Function

Research in the lab of Elizabeth Leibold, PhD, showed that in mice with iron deficiency, proinsulin processing to mature insulin was impaired, resulting in reduced levels of circulating and glucose intolerance. Mice treated with iron restored insulin to normal levels and eliminated the glucose intolerance. Continue reading → How Iron Deficiency Impairs Pancreatic β-Cell Function

Mechanisms of Circulatory Abnormalities and Fatigue in Patients with Cardiovascular Diseases

Markus Amann, PhD, and colleagues recently discovered that both heart failure and hypertension impair an important neurocirculatory control mechanism in humans—specifically, a reflex loop mediated by neural feedback from muscles to the central nervous system. This impairment results in excessive sympathetic nervous system activity, and largely accounts for the circulatory abnormalities observed during physical activities. Continue reading → Mechanisms of Circulatory Abnormalities and Fatigue in Patients with Cardiovascular Diseases

Architecture of the Inner Ear

Normal hearing is dependent upon a highly specialized structure in the inner ear called the tectorial membrane. How this precisely organized extracellular matrix is assembled had been unknown. However, Park and colleagues showed the inner ear membrane anchors to the cell surface during development and grows one layer at a time. Continue reading → Architecture of the Inner Ear

Gene Expression and Health Risks

An important area of research involves learning how gene expression influences health and disease risks. The parts of the genome that regulate gene expression are cis-regulatory elements. Gregg and colleagues took an unusual approach to discover these cis-regulatory elements by analyzing the genomes of species that evolved disease resistance “superpowers”. Continue reading → Gene Expression and Health Risks

An EHR Clinical Support App for Monitoring Bilirubin Levels

Electronic health records (EHR) are a rich source of clinical and research data, but clinicians and researchers often cannot access this information efficiently. The Department of Biomedical Informatics has developed the ReImagineEHR initiative to improve the functionality of electronic health record systems. Continue reading → An EHR Clinical Support App for Monitoring Bilirubin Levels

Bone-Anchored Devices that Permanently Pass Through the Skin to Maximize Amputee Function

A common orthopedic approach to recreating damaged joints is to securely attach a metal implant to the patient’s own bone, a process known as osseointegration. Our research explores a new approach by engineering percutaneous osseointegration devices, in which the metal implant that pass permanently through the skin and permit connection to an external prosthetic limb when desired. The connection can not only be accomplished easily as needed; it also improves the function of the prosthesis. Continue reading → Bone-Anchored Devices that Permanently Pass Through the Skin to Maximize Amputee Function

Analyzing Human Pedigrees to Advance Genetics and Health

Well curated human pedigrees like the iconic pedigrees maintained by the Centre d’Etude du Polymorphism Humain (CEPH) provide an invaluable resource for fundamental discoveries in human genetics and health. The CEPH collection includes families collected by R. White (Utah), J. Dausset (French), J. Gusella (Venezuelan), and J. Egeland (Amish). Continue reading → Analyzing Human Pedigrees to Advance Genetics and Health

Cellular Origins of Pancreatic Cancer

Our pancreas has two main functions, endocrine control of blood sugar and exocrine production of the enzymes that digest our food. These enzymes are synthesized by pancreatic acinar cells and transported to the intestine through a network of pancreatic duct cells. Pancreatic cancer, the third deadliest cancer in the U.S., was previously assumed, based on histology and gene expression, to arise from duct cells. Continue reading → Cellular Origins of Pancreatic Cancer

Signaling Pathways That Underlie Heart Disease

Diseases affecting heart function exact an enormous toll on human health, but many of the genetic and molecular mechanisms underlying heart disease remain unknown. Yost and colleagues discovered novel roles for the same developmental signaling pathway in two seemingly unrelated sources of cardiac dysfunction: adult heart failure and embryonic heart malformation. Continue reading → Signaling Pathways That Underlie Heart Disease

Neuronal Circuits that Modulate Pain and Defensive Responses

Understanding pain-processing mechanisms and the neural circuits involved is central to developing new therapeutic strategies for the treatment of pain. The Douglass lab investigated brain regions that modulate behavioral responses to noxious stimuli in zebrafish. Continue reading → Neuronal Circuits that Modulate Pain and Defensive Responses

Generation and Treatment of Antibiotic Resistance

Antibiotics are responsible for the most significant increase in lifespan in human history. However, microbes are becoming resistant to antibiotics at an alarming rate. The Mulvey lab found that microbes within a single colonized site, such as the human bladder, can pass antibiotic resistance genes back and forth, propagating resistance as the infecting microbes evolve in response to serial antibiotic treatment. Continue reading → Generation and Treatment of Antibiotic Resistance