Neuronal Connections in the Retina

Bryan Jones, PhD, and colleagues used electron microscopes to visualize the chemical and electrical synaptic connections that makes up the neural network. They further observed, in a transgenic rabbit model of early retinal degeneration, abnormal connectivity in the rod-photoreceptor network and novel synaptic connections derived from sprouting. Continue reading → Neuronal Connections in the Retina

Research Statement

Research: Understanding how retinal circuitry changes in disease and how it is altered from wild type conditions is critical to understanding pathogenic processes and deriving therapeutic interventions. Our work over the last few years has focused on the normal circuitry and aberrant remodeling of the neural retina and its circuitry triggered by inherited and induced retinal degenerations. This work is responsible for discovering the substantial clinical significance of negative neuronal remodeling in retinal degenerations. Ongoing work in remodeling extends to both animal disease models and human models of retinitis pigmentosa and age related macular degeneration. Future goals are to solidify our understanding of retinal circuitry as well as pathological retinal circuitry, particularly earlier in the disease process by creating complete network diagrams with rich data including classes, cell patternings, and complete connectivities. This work is fundamental for comparison and understanding of aberrant or corrupt circuitry observed in neurogenetic models as well as diseases that trigger retinal remodeling such as age related macular degeneration and retinitis pigmentosa.

Jones Lab